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Silica nanoparticles have emerged as versatile materials with widespread applications, particularly in industries ranging from 

medicine to electronics. However, their increasing ubiquity raises concerns about potential adverse health effects. This review 

delves into the intricate landscape of the toxicological effects associated with silica nanoparticles, aiming to provide a 

comprehensive understanding of their multifaceted impact on human health. Drawing from a vast body of research, we explore 

diverse aspects, including respiratory, cardiovascular, and dermal effects, as well as potential implications for reproductive and 

immune systems. The intricate interactions between silica nanoparticles and biological systems are scrutinized, shedding light on 

cellular mechanisms and pathways involved in toxicity. Additionally, the influence of physicochemical properties, such as size, 

surface charge, and shape, on the toxicity profile is thoroughly examined. Insightful discussions on exposure routes, dosimetry, 

and risk assessment contribute to a holistic perspective on the potential hazards associated with silica nanoparticles. As we 

navigate through this toxicological terrain, it becomes evident that a nuanced understanding of the complex interactions between 

silica nanoparticles and the human body is imperative for informed decision-making in both scientific and regulatory realms. This 

review not only synthesizes existing knowledge but also identifies critical research gaps, paving the way for future investigations 

aimed at elucidating the intricacies of silica nanoparticle toxicity. 
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1.Introductiion 

In recent years, silica nanoparticles have become 

ubiquitous in various industrial and technological 

applications, showcasing their versatility and 

adaptability. As these nanoparticles find their way into an 

increasing array of products, concerns about their 

potential impact on human health have escalated. This 

review endeavors to comprehensively explore the 

intricate landscape of the toxicological effects associated 

with silica nanoparticles, offering a nuanced 

understanding of their multifaceted influence on human 

health [1]. 

Silica nanoparticles, characterized by their unique 

physicochemical properties, have found applications in 

fields as diverse as medicine, electronics, and materials 

science. However, their pervasive presence raises critical 

questions about the potential risks they pose to human 

well-being. This review synthesizes existing research, 

providing a thorough examination of the various 

dimensions of health impacted by silica nanoparticles. 

From respiratory and cardiovascular effects to dermal, 

reproductive, and immune considerations, the 

exploration of these multifaceted health impacts is 

crucial for informed decision-making in both scientific 

research and regulatory frameworks. 

Throughout this journey, we will delve into the intricate 

interactions between silica nanoparticles and biological 

systems, unraveling the cellular mechanisms and 

pathways that underlie their toxicity. Moreover, the 

influence of key physicochemical attributes, including 

size, surface charge, and shape, will be scrutinized, as 

these factors play a pivotal role in determining the 

toxicological profile of silica nanoparticles [2]. 

As we navigate this toxicological terrain, this review 

aims not only to consolidate current knowledge but also 

to identify critical gaps in research, paving the way for 

future investigations. By doing so, we contribute to a 

more comprehensive understanding of the potential 

hazards associated with silica nanoparticles, ensuring 

that scientific discourse and regulatory decisions are 

grounded in a holistic appreciation of their multifaceted 

health impacts. 

2. Toxic Effects by Organ System  

Numerous models have been used to test silica 

nanoparticles both in vitro and in vivo. Most of 

these studies on effects at the cellular, tissue, and 

organ levels made use of amorphous colloidal 

SiO2-NPs, which are primarily produced using 

the Stober process. Crystalline, pyrogenic, 

vitreous, or surface modified SiO2-NPs were 

employed in certain instances.  

3. Respiratory System  

SiO2-NPs dose-dependently decreased viability 

and induced apoptosis in human lung cells. 

Indicators of oxidative stress included DCF, 

GSH, MAD, and LDH. COX-2 expression and 

IL-8 release were indicators of inflammation. The 

following extracellular parameters were increased 

in a dose- and time-dependent manner: lactate, 

glucose, histidine, phenylalanine, and tyrosine. 

ER stress and DNA damage were also noted. 

JNK-mediated acetylation of p53 and SIRT11 

was linked to apoptosis. In certain cases, cells 

were able to avert apoptosis by initiating 

autophagy. It was discovered that the fibrotic 

mechanisms were autophagic flux blockage and 

interactions between macrophage fibroblasts. 

Shape factors affected aggregation but did not 

significantly alter the release of IL-8 or LDH from 

mesothelial cells [3].  

 Overall, exposure to SiO2-NPs disrupted several 

pathways involved in global metabolism. The 

inflammatory response in mice was influenced by 
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both sex and particle size. Allergy-related 

respiratory symptoms were dose-dependently 

exacerbated when PEG-coated SiO2-NPs were 

co-exposed to a sensitising allergen. After being 

infused with silica, scavenger receptor class A 

type I/II null mice (CD204) did not exhibit 

fibrosis; instead, they displayed increased 

neutrophil accumulation and elevated TNF-α. 

This suggests that alveolar macrophages play a 

crucial role in mitigating inflammation caused by 

silica exposure. Follistatin (FST) expression in 

human lung cells and mouse lung tissues, 

mediated by Nrf2, provided protection [4].  

4. Circulatory system  

SiO2-NPs demonstrated cytotoxicity, LDH 

leakage, inflammatory cytokine production, 

necrosis, apoptosis, ER stress, and autophagy in 

human umbilical vein endothelial cells. 

Potassium ion channel activation was linked to 

cytotoxicity and LDH leakage. Independent of 

ROS and AMPK, autophagy was linked to the 

PI3K/AKT/e NOS/NO signalling pathway; 

blocking autophagy reduced necrosis but not 

apoptosis. SiO2NPs demonstrated apoptosis, 

oxidative stress, LDH leakage, and an increase in 

Ca2+ in erythrocytes and platelets. Platelet 

aggregation and haemolytic activity resulted from 

this. Particle size had an inverse relationship with 

haemolytic activity, which was higher for aged 

mesoporous or nonporous particles (assuming the 

ageing effect was not due to degradation 

products). Haemolytic activity was reduced by 

PEG surface modification. Intratracheally 

administered SiO2-NPs in rats to serum and the 

heart moved to the heart and serum, where it 

caused dose-dependent harmful alterations in the 

production of cardiac enzymes, body weight, 

blood factors, apoptosis (as confirmed by protein 

expression), and histopathology. In cardiac cells, 

silica nanoparticles resulted in cytotoxicity and 

metabolic disruption. SiO2-NPs also prevented 

D3 murine embryonic stem cells from 

differentiating into cardiomyocytes, even at low 

concentrations where cytotoxicity was not noted 

[5].  

5. Digestive system  

Silica nanoparticles increased ROS production, 

mitochondrial damage, and apoptosis in human 

liver cells. Even at low doses, where there was no 

morphological alteration or rise in reactive 

oxygen species, proteomic analysis showed 

changes in protein expression. SiO2-NPs grafted 

with polymer were less cytotoxic in human colon 

cells, and there was a positive correlation between 

biocompatibility and higher grafting density. 

SiO2-NPs smaller than 300 nm that were injected 

intravenously in mice resulted in liver damage 

linked to sinusoidal endothelial cells and Kupffer 

cells. Four weeks of subacute exposure led to 

hepatic fibrosis. Over the course of six weeks, an 

intraperitoneal injection increased early fibrosis, 

lymphocytic infiltration, Kupffer cell activation, 

and inflammatory cytokines [6].  

6. Immune System  

Silica nanoparticles stimulated caspase1 in 

macrophages in a way that was dependent on 

Nalp3. Changes in the regulation of potassium 

and an increase in ROS production followed this. 

Both crystalline and vitreous SiO2-NPs exhibited 

NOS activation, TNF-α production, and 

cytotoxicity. The SiO2-NPs in both crystalline 
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and vitreous forms exhibited strong hydrophilic 

surface sites, sustained hydroxyl radical release, 

and sharp edges. Oxidative stress was typically 

linked to cytotoxicity. Macrophages stimulated 

by exposure to lipopolysaccharides released 

Inflammasomes of the interleukin-1 family 

following a subsequent exposure to silica 

nanoparticles. Via NADPH oxidase in the cell 

membrane, ATP released from the P2X7 receptor 

caused the production of ROS [7].  

7. Nervous System  

Silica nanoparticles reduced extracellular 

acidification and cellular respiration in human 

neuronal cells. During differentiation, there was a 

decrease in mitochondrial function and a 

destabilisation of the mitochondrial membrane 

potential. Cell stiffness was also observed as a 

result of cytoskeletal aberrations. Many aspects of 

hippocampal function, such as reactive oxygen 

species (ROS), lipid peroxidation, protein 

oxidation, nitrite production, antioxidant activity, 

GSH, AChE, and inflammatory markers, were 

impacted by intraperitoneal exposure to rats. 

Vacuolation was found in the histopathology, and 

oral abnormalities in spatial learning and memory 

were noted [8-10].  

8. Renal System  

SiO2-NPs resulted in lipid peroxidation, 

apoptosis, nuclear condensation, increased ROS, 

reduced GSH, and decreased viability of human 

embryonic kidney cells. When rats were given 

silica nanoparticles, the kidneys experienced 

secondary effects. After seven and thirty days, 

fibrotic indicators and inflammatory markers 

were noticed [11].  

9. Integumentary System  

SiO2-NPs with an average diameter of 30 to 535 

nm were all absorbed by mouse keratinocytes. For 

particles larger than 100 nm, cytotoxicity and 

LDH leakage were not observed, but they were 

dosedependent. GSH reduction was observed to 

follow a similar pattern [12].  

10. Reproductive system  

SiO2-NP exposure caused oxidative stress in the 

testis, DNA damage, histopathological 

alterations, and a reduction in the quantity and 

quality of sperm in male mice. SiO2-NP exposure 

in female mice caused uterine inflammation, 

trophoblast apoptosis, atresia, oxidative stress in 

the ovaries, DNA damage, and an imbalance in 

sex hormones [13-15]. 
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